Spatial variation of deuterium enrichment in bulk water of snowgum leaves.

نویسندگان

  • Jirí Santrucek
  • Jirí Kveton
  • Jirí Setlík
  • Lenka Bulícková
چکیده

Deuterium enrichment of bulk water was measured and modeled in snowgum (Eucalyptus pauciflora Sieber ex Sprengel) leaves grown under contrasting air and soil humidity in arid and wet conditions in a glasshouse. A map of the enrichment was constructed with a resolution of 4 mm by using a newly designed cryodistillation method. There was progressively increasing enrichment in both longitudinal (along the leaf midrib) and transversal (perpendicular to the midrib) directions, most pronounced in the arid-grown leaf. The whole-leaf average of the enrichment was well below the value estimated by the Craig-Gordon model. The discrepancy between model and measurements persisted when the estimates were carried out separately for the leaf base and tip, which differed in temperature and stomatal conductance. The discrepancy was proportional to the transpiration rate, indicating the significance of diffusion-advection interplay (Péclet effect) of deuterium-containing water molecules in small veins close to the evaporating sites in the leaf. Combined Craig-Gordon and desert-river models, with or without the Péclet number, P, were used for predicting the leaf longitudinal enrichment. The predictions without P overestimated the measured values of deltadeuterium. Fixed P value partially improved the coincidence. We suggest that P should vary along the leaf length l to reconcile the modeled data with observations of longitudinal enrichment. Local values of P, P(l), integrating the upstream fraction of water used or the leaf area, substantially improved the model predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-steady-state, non-uniform transpiration rate and leaf anatomy effects on the progressive stable isotope enrichment of leaf water along monocot leaves.

This study focuses on the spatial patterns of transpiration-driven water isotope enrichment (Delta(lw)) along monocot leaves. It has been suggested that these spatial patterns are the result of competing effects of advection and (back-)diffusion of water isotopes along leaf veins and in the mesophyll, but also reflect leaf geometry (e.g. leaf length, interveinal distance) and non-uniform gas-ex...

متن کامل

The Effect of Deuterium Depleted/Enriched Water on the Growth of A549 and HepG2 Cell Lines

Background: Although advances in cancer therapy continue to develop, the overall survival rate is poor for some cancer cases. The search for a new adjuvant strategy is the focus of cancer treatment. There is some evidence suggesting a change in the mechanism of cell function by a change in the content of deuterium in the medium. So, the aim of this study was to investigate the ...

متن کامل

Evidence for diurnal periodicity in human cholesterol synthesis.

Diurnal variation in human cholesterol synthesis in the rapidly exchangeable pool was studied in six healthy normolipidemic individuals by measurement of deuterium incorporation from body water into plasma cholesterol. After oral administration of D2O, free and de-esterified plasma cholesterol and plasma water were sampled over 48 h, converted to hydrogen, and deuterium enrichment was determine...

متن کامل

(18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton leaves.

Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the (18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem...

متن کامل

Catchment-scale spatial variability analysis of soil hydro-physical properties in a semi-arid region of Iran

Soil hydrau-physical data are important for many hydrological modelings. They are the main variables controllingthe key processes such as water and chemicals movement and transport in the soil profiles. This study was conductedin order to analyze the spatial distribution of selected soil hydrau-physcial characteristics including infiltration rate(IR), saturated hydraulic conductivity (Ks), bulk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 143 1  شماره 

صفحات  -

تاریخ انتشار 2007